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The global symmetry implied bythe fact that one can multiply all masses with 
a common constant is made into a local, gauge symmetry. The matter action 
then becomes conformally invariant and it seems natural to choose for the 
corresponding scalar gauge field the action for a conformally invariant (massless) 
scalar field. The resulting conformally invariant theory turns out to be equivalent 
to general relativity. Since this means that the usual Einstein-Hilbert action is 
not, in fact, a true gauge action for the space-time geometry, the full theory 
ought to be supplied with such a term. Gauge-theoretic arguments and conformal 
invariance requirements dictate its form. 

But a truly infinitesimal geometry must recognize only the transference of length 
from one point to another point infinitely near the first. [H. Weyl (1918)] 

1. I N T R O D U C T I O N  

The title of  this article may (should)  seem absurd,  since, as everyone 

concerned  knows,  general  relativity (GR) is nei ther  conformal ly  invar ian t  

nor  does it make use of  a scalar field. Sometimes G R  has been  cla imed to 
be a gauge theory,  bu t  that,  too, is wrong (Yang,  1974). In  this article I 
i n t end  to show that  G R  in fact has all these qualit ies,  though h idden  in a 
subtle way. The present  view of  G R  leads one in a na tura l  way to thoughts  
on  higher  derivative correct ions which const i tute  the conc lus ion  of  the 

article. 

2. C O N F O R M A L  S Y M M E T R Y  

The pr inc ip le  of equivalence  states that  all particles,  u n d e r  the inf luence 
of  gravity, move along trajectories that are i n d e p e n d e n t  of  the value of  their  
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mass. In prerelativistic mechanics one also noted that, as far as gravity is 
concerned, particle masses occur in such a way that nothing changes if they 
are all multiplied with a common constant; only relative masses are o f  
importance. With modern gauge theories in mind, this can be viewed as a 
global symmetry of  the Lagrangian, sometimes called scale invariance, and 
one is thus immediately led to considering making this symmetry local. This 
means that the multiplicative constant becomes a scalar field and the action 
for classical point particles with masses ma becomes 

S , , = Y , - j  madpds (1) 

Here ~b is the scalar field and ds is the element of  length along the particle 
trajectory. The resulting action is now conformally invariant, i.e., invariant 
under transformations of  the form 

g,k(x) -,  g ~ ( x )  = ~2(x)g ,~(x)  (2) 
where glk(X) is the space-time metric and l)2(x) a so-called conformal factor. 
This assumes that the scalar field transforms in the standard way, i.e., 
according to 

4,(x) -~ (b'(x) = a - 1 6 ( x )  (3) 

and the invariance then follows immediately from the definition of  ds: 

ds = (go dx' dxJ) '/2 ~ ds' = l l  ds (4) 

There is a multitude of  reasons for assuming conformal invariance in physics, 
as originally pointed out by Weyl. Fundamentally, length is measured by 
placing an object adjacent to the measuring rod and comparing. Thus, the 
meaningfulness of comparing lengths of  objects a finite distance apart must 
inevitably rest on some hypothesis about the nature of  space-time. Another 
fact of  relevance is that the causal null cone structure is invariant under 
conformal transformations (Penrose and Rindler, 1984). 

3. T H E  S C A L A R  F I E L D  

In accordance with the standard prescription for the construction of  
gauge theories, we now need an action for the scalar field itself. It would 
seem silly to let this term ruin the invariance achieved in the matter term, 
so the only natural choice is the conformally invariant action given by 

S o = J L4,(x ) d4x (5) 

where 

L~ ( x ) = - �89 (g ik rb,,4) k - ~R~b 2) (6) 
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[see Wald (1984, Appendix 4), or Birrell and Davies (1982), whose sign 
conventions are used here]. The minus sign ensures the physically correct 
(positive) sign in front of the scalar curvature R. Note that the above 
construction is only natural in four space-time dimensions; the invariance 
of (6) is consistent with the transformation (3) only for this particular 
number of dimensions. 

4. O N  SCALAR-TENSOR THEORIES 

One now notes that, for a given nonzero field th, the conformal factor 
in (3) can always be chosen so that the transformed th is constant. This 
means that, provided one can assume the field ~b to be nonvanishing, the 
above theory is equivalent to GR. Harrison (1972) has considered a class 
of scalar-tensor theories, and the present theory is a member of this class. 
Of the theories in the Harrison class it is unique in being conformally 
invariant and in not giving any extra matter terms. More famous class 
members are the theories of Jordan and of Brans and Dicke. Harrison found 
that all these theories are, in fact, implicitly embodied in GR. The point of 
view arising from the present study turns this line of thought upside down: 
General relativity is in fact a conformally invariant scalar field theory. The 
ordinary Einstein-Hilbert action arises for a particular choice of conformal 
factor corresponding to a particular choice of gauge. 

In the past, scalar-tensor theories were constructed by adding a scalar 
field to GR, but here this viewpoint is reversed: the scalar field is the starting 
point and GR results. Apart from the fact that GR thus has been made into 
a gauge theory, the present view is also pleasing since there are numerous 
motivations for a scalar field such as Mach's principle, Dirac's large number 
coincidence, etc., as discussed, for example, in Harrison (1972). However, 
one is now in a situation where the degrees of freedom corresponding to 
space-time geometry have no action of their own. The scalar curvature R 
only appears indirectly in the action (6)because of the requirement of 
conformal invariance. 

5. H I G H E R  D E R I V A T I V E  C O R R E C T I O N S  TO GR 

Let us approach the question about the action for the geometry in the 
same spirit as above, i.e., through the analogy with gauge theories. These 
theories are characterized by the replacement of certain constants charac- 
terizing symmetries by fields and the simultaneous replacement of partial 
derivatives Oi with covariant derivatives Di. The Lagrangian of the gauge 
field is then always something like ~[Di,  D~] 2, i.e., the square of the 
commutator of the covariant derivatives. In the case of gravitation these 
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replacements, in the matter Lagrangian, are ~ik -'~ g i k ( X )  and a~ ~ V~ = a~ + Fi. 
The Lagrangian of the field itself should then be something like -[V~, V~ ]2 

2 
Ri jk l  , as discussed by Yang (1974). Use of the Gauss-Bonnet theorem 

f(RijkIRijk1-4RURu + R 2) ~ = Euler number = const (7) d4x 

however, makes such a Lagrangian equivalent to one expressed in terms of 
R~ and R 2. This made Stelle (1978) investigate the two-parameter class of 
actions 

Sr = f ~F(X) d 4 X  (8) 
d 

with 

~r(X) = ~ ( olR~Y R~ - fiR 2) (9) 

The R~kl action leads to a = 4/3, a combination of no particular sig- 
nificance otherwise. On the other hand, Stelle found that the combination 
a = 3/3 is special and corresponds to the higher derivative correction being 
purely repulsive in first approximation. Here I only wish to point out that 
this is the combination that arises from conformal invariance. That is, with 
Weyl's conformal curvature tensor one obtains 

O /  .. 

:er(  x ) = ~ -~ c'~' c~, 

which is conformally invariant. Now the identity 

C ijkl  C i j k  I = R ijklRijkl - -  2R ORv + )R 2 

(10) 

(11) 

together with (7) shows that this is equivalent to the following Lagrangian: 

~r(X) = v ~  a (R OR U - ~R 2) (12) 

6. ON ORDERS OF MAGNITUDE 

The term higher derivative correction used for the types of terms 
discussed above is, of course, not really appropriate; the gauge theory 
analogy indicates that the connection F corresponds to the potentials, and 
as indicated by the notation, the action (10) [or (12)] is in fact an ordinary 
action containing first derivatives of these potentials. Also in this respect  
ordinary GR is strange from the gauge theory point of view since there the 
potential is the metric and the connection is the force field. It is my hope 
that this article has succeeded in throwing some light on what lies behind 
this strangeness. 
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The full theory suggested here corresponds to a total action 

S =  Sm + S~, + Sr  (13) 

and it is clear that in order for this to be physically realistic the constant 
value of the field ~b must be proportional to the inverse of the gravitational 
constant G. Since it is reasonable to assume that the constant a in (12) is 
of  order of  magnitude unity, this yields a prediction of the relative import- 
ance of  the higher derivative terms: if $6 is of  order unity (G~ then Sm is 
of  order G and Sr of order G 2. The new physical effects predicted by the 
theory outlined here are, of course, very small under ordinary conditions, 
but could be crucial in quantum gravity and cosmological circumstances. 

7. CONCLUSIONS 

It is instructive and a bit surprising to observe how the attempt to 
construct a conformally invariant scalar field theory forces one to include 
the scalar curvature in the action and how this term, so to speak, takes over 
the show. Apart from making GR into a gauge theory in a more natural 
way than before, the approach also leads one to higher derivative corrections 
and gives an estimate of  their importance. Quite apart from the higher 
derivative discussions, the present approach provides a fairly convincing 
derivation of  general relativity and thus shows why this theory is so effective 
and powerful. 
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